Enzo Lectures Mike Norman, Matt Turk Laboratory for Computational Astrophysics UC San Diego

	Morning	Afternoon
Mon.	Introduction to Enzo	
Tue.	 Setting Up and Running Enzo Enzo Projects 	Introduction to YT
Wed.	Basic Enzo Algorithms	Lab session
Thu.	Applications to First Stars, First Galaxies, and Reionization	Lab session
Fri.	What's New in Enzo 2.0?	Q & A

•First luminous objects

•Massive stars (OB)

- •Form via H2, HD cooling
- Preprocess gas for FG

•Galaxy building blocks •Normal stellar populations •Ly α cooling •Thought to reionize U.

•Global!

•IGM mass density variations on all scales to > 100 Mpc/hSource clustering

•Percolation of HII regions of individual galaxies •Low mass G's may dominate Observations constrain when, not how

luminosity functions

luminosity functions (LF) are key for determining the UV luminosity density and star formation rate densities

existing z~4-6 luminosity functions show that the slope is very steep at the faint end below L* ($\alpha \sim -1.75$)

the bulk of the integrated UV flux at high-redshift comes from sub-L* low luminosity galaxies

the changes in the LF with redshift are primarily at the bright end.

G. Illingworth

Halo Mass Function

- About 10 galaxies >= 10^8 M_s per (Mpc/h)³ @z=6
- 100 Mpc/h box would have 10⁷ sources!
- Need a radiative transfer method whose cost/source is ~independent of N(source)
- Such a method is in Enzo
 2.0

Nomenclature

- Pop III.1
 - Gas of primordial composition
 - Initial conditions purely cosmological
- Pop III.2
 - Gas of primordial composition
 - Initial conditions modified by radiative or kinetic feedback of Pop III.1 stars, but not chemical feedback
- Pop II
 - Stars formed from metal enriched gas
 - Z>Z_{crit}~10^{-3.5} Z_s (Bromm & Loeb 2005; Smith et al. 2008, 2009)

Formation of Pop III.1 protostars

Bromm et al. 1999, 2002; Abel et al. 2000, 2002; Yoshida et al. 2003, 2006, 2008, 2009; O'Shea & Norman 2006, 2007, 2008; Turk et al. 2008, 2009

primordial matter power spectrum

- hierarchical structure formation
- \rightarrow DM minihalo (M_{dyn} ~ 10⁶ M_s, z~20)
- \rightarrow primordial cloud ($\dot{M}_{cl} \sim 10^4 M_s$)
- \rightarrow H₂ formation and cooling
- \rightarrow collapsing core (M_{core} ~ 10³ M_s)
- \rightarrow accreting protostar (M_{ps} ~ 10⁻² M_s, m*~ 10⁻² M_s/yr)
- Stellar evolution, accretion, and radiative feedback
- →endpoints (supernovae and black holes)

Figure 2: The projected gas distribution at z = 17 in a cubic volume of $600h^{-1}$ kpc on a side. The cooled dense gas clouds appear as bright spots at the intersections of the filamentary structures. From Ref. (17).

Yoshida et al. (2003)

H₂ formation: the key to Pop III star formation

$$\mathbf{H} + e^- \rightarrow \mathbf{H}^- + \gamma,$$

 $\mathbf{H}^- + \mathbf{H} \rightarrow \mathbf{H}_2 + e^-.$

Catalytic reaction becomes efficient above 2000K

Cooling becomes efficient above f(H2)~10⁻⁴

Yoshida et al. (2003)

Pop III Star formation: the current paradigm

Range of resolved scales = 10^{10}

From Abel, Bryan and Norman 2002, Science, 295, 93

Evolution of cloud core

Abel, Bryan & Norman (2002)

Origin of mass scale: H₂

- H₂ cooling rate (per particle) becomes independent of density above n=10⁴ cm⁻³ ("critical density")
- 0-1 ro-vib. excitation temperature =590K
 - T_{min}~200K
- Cloud core "loiters" at these conditions until a Jeans mass of gas accumulates, and then it collapses

$$M_{\rm J} \approx 500 M_{\odot} \left(\frac{T}{200}\right)^{3/2} \left(\frac{n}{10^4}\right)^{-1/2}$$

Stellar Density Achieved!

Yoshida et al. (2008), Turk et al. (2008)

Pop III Binarity: Princeton Twist Survey Turk et al. in prep

A hyper-accreting protostar

Re-formulate the problem as gas accretion onto a hydrostatic core, using the mass accretion rate from our simulation.

Compute the evolution of the mass and radius.

slide courtesy N. Yoshida

slide courtesy N. Yoshida

Formation of Pop III.2 protostars

Machacek et al. 2001, 2003; O'Shea et al. 2005; Ahn & Shapiro 2006; Yoshida et al. 2007; Wise & Abel 2008; Whalen et al. 2008

- Initial conditions disturbed by radiative feedback from a Pop III.1 star
 - EUV radiation pre-ionizes gas, which recombines and cools via H₂ and HD
 - local
 - FUV radiation photodissociates H₂, delays cooling and collapse
 - local or global (Lyman-Werner background)

Pop III star formation in a relic HII region (O'Shea et al. 2005, Yoshida et al. 2007)

Abel, Wise & Bryan (2007)

Yoshida et al. (2007)

Origin of Pop III.2

H₂ formation

H₂ destruction

H₂ & HD formation

Evolution of the FUV background Wise and Abel (2005)

FUVB delays collapse, and raises core temperature and accretion rate (O'Shea & Norman 2008)

Implies Pop III stars formed at lower redshift are more massive

Origin of Pop III.2

Final Stellar Masses

- Pop III.1 (III.2) stars enter main sequence at M~100 (40) Ms while they are still accreting mass from their birth cloud (~1000 Ms)
- How massive can they become?
 - Mass loss due to stellar winds presumed negligible (Baraffe et al. 2001, Kudritzki 2002)
 - Radiation pressure on grains not a factor
 - Consider other radiative feedback effects

Fate and Remnants of Pop III Stars non-rotating models (Heger & Woosley 2002)

phenomenon

Chemical Feedback from Pop III SN (O'Shea 2005)

4x10⁵ yr

6x10⁷ yr

Transition to Pop II Stars Smith, Turk, Sigurdsson & MN (2009)

Metallicity and CMB temperature determine how cool gas gets, and characteristic fragment mass

Figure 5. Mass-weighted, average temperature as a function of number density for all runs in Set 1. The colors are the same as in Figure 2, including the runs with metallicities $Z = 10^{-4.25} Z_{\odot}$ (dashed-yellow), $10^{-3.75} Z_{\odot}$ (dashed-green), and $10^{-3.25} Z_{\odot}$ (dashed-blue). The thin, black, dashed lines indicate lines of constant Jeans mass in M_{\odot} . The horizontal, blue, dashed line denotes the temperature of the CMB at z = 19, the approximate redshift of collapse for runs r1_Z-2.5 and r1_Z-2. The central cores in these two runs were both able to cool to the temperature of the CMB.

First Galaxies (Protogalaxies)

- A 10⁸ Ms galaxy will form from DM and gas pre-processed by multiple Pop III SF episodes
- Strong radiative feedback, SN feedback, and shallow potential wells deplete 1st galaxies of baryons

Wise & Abel 2008

Pop III Star Formation Events

Wise & Abel 2008

Baryons Depleted 3x

Wise & Abel 2008

Test Run Including Pop III → II Transition Wise, Abel & Norman (in prep)

- Pop III model
 - Wise & Abel (2008)
 - Mass drawn from a topheavy IMF
 - UV luminosities and lifetimes drawn from Schearer (2002)
 - Endpoints and SN yields taken from Heger & Woosley

- Pop II model
 - Wise & Cen (2009)
 - "star cluster particle"
 created if Z>Zcrit (10⁻⁴
 Zs)
 - 104 Ms
 - Salpeter IMF
 - EUV emitted 40 Myr
 - Standard SN yields
Test Run Including Pop III → II Transition Wise, Abel & Norman (in prep)

- L_{box}=600 kpc/h
- 96³ root grid and particles
- 10 levels of refinement
- $M_{dm} = 10^3 Ms$
- ∆x(min)=1pc

 (\mathbf{K})

Temperature

Connecting first galaxies with cosmic reionization via self-consistent cosmological RHD simulations

Michael Norman, Pascal Paschos, Geoffrey So, Matt Turk, Robert Harkness, UCSD Dan Reynolds, SMU John Wise, Jerry Ostriker, Princeton Massimo Ricotti, U Maryland

...or, what can you do with a Petaflop?

NICS Kraken, ORNL

100,000 cores, >1 Pflops peak

Science Motivations

- Want to connect first galaxies to reionization in a self-consistent (i.e. predictive) way
 - Mass scale of reionizers
 - radiative feedback effects on self and nearest neighbors
 - High-z galaxies highly biased and clustered
 - Internal physical properties of FLOs
 - Evolving stellar populations of FLOs
 - Predictions for JWST and ALMA

Three generations of cosmological reionization simulations

- 1. Local self-consistent
 - (small boxes < 10 Mpc)</p>
 - CRHD+SF+ionization+heating
 - e.g., Razoumov et al. 2002
- 2. Global post-processing
 - (large boxes > 100 Mpc)
 - N-body + RT
 - e.g., Iliev et al. 2006
- 3. Global self-consistent
 - (large boxes > 100 Mpc)
 - CRHD+SF+ionization+heating
 - Norman et al. 2010, in prep.

Self-consistent evolution of sources, IGM, and radiation backgrounds

Cosmological hydro/N-body dynamics

What's the difficulty?

- Tremendous range of scales
 - Global reionization: >100 Mpc
 - First galaxies scale lengths: < 1 kpc
 - Ratio: >10⁵ achievable with AMR
- Large number of emitting sources
 - $-10^{6} 10^{8}$ depending on box size and lower mass cutoff
 - Need O(N) scalable radiation solvers
- Uncertain star formation physics
 - HST, JWST, ALMA to the rescue

Our strategy

Go deep

Go wide

Cosmological volume > 100 Mpc/h

- RHD with adaptive ray tracing
- Sub-kpc resolution
- John Wise (Princeton)

Cosmological volume > 100 Mpc/h

- RHD with implicit FLD
- Sub- 100 kpc resolution
- Dan Reynolds (SMU)

Deep AMR simulation of highly biased region inside 30 Mpc box

 $M_{dm} = 3 \times 10^4 Ms$

 $Min(\Delta x) = 11pc@z=6$

Pop II SF/FB model of Wise & Cen (2009)

Metal enrichment and metal-dependent cooling

adaptive ray tracing radiative transfer

A Huge Unigrid: 6400³ Enzo

6400³ cells/particles, 80 Mpc box, DM+Gas+SF/FB

93,000 cores, Kraken

Self-consistent Cosmological Radiation Hydrodynamics/Ionization Reynolds et al. (2009), JCP

- Goal
 - Create a parallel scalable solver that couples cosmological hydrodynamics, radiation transport, chemical ionization, and gas photoheating selfconsistently

Implicit Coupled System

• non-equilibrium multispecies model

$$\partial_t e_c = -\frac{2\dot{a}}{a}e_c + G - \Lambda, \qquad (19)$$

$$\partial_t \mathbf{n}_i = \alpha_{i,j}\mathbf{n}_e\mathbf{n}_j - \mathbf{n}_i\Gamma_i^{ph}, \qquad (20)$$

$$\partial_t E = \nabla \cdot (D\nabla E) - m\frac{\dot{a}}{a}E + 4\pi\eta - c\kappa E, \qquad (21)$$

- Optimally scalable Newton-Krylov-Schur-Multigrid nonlinear solver for resulting system of equations (Reynolds et al. 2009)
 - Cost independent of the number of sources
 - Cost scales linearly with number of processors
- Easily generalized to multi-frequency/group and variable tensor Eddington factors

Scalability, algorithmic and parallel

Weak scaling test: lattice of HII regions

Geometric multigrid is optimally scalable

HYPRE parallel implemenation also scalable

Fig. 13. Weak scaling results for the cosmological HII-region expansion test.

Mesh	Processors	Time Steps	Run Time	Newton Its	CG Its	MG V-cycles
64 ³	1	266	1694.38	322	914	2991
128^{3}	8	265	2299.60	274	799	2575
256^{3}	64	265	2456.58	268	787	2524
512^{3}	512	264	2594.50	265	780	2510
1024^{3}	4096	264	2707.30	265	780	2510

HII Region Expansion in static, homogeneous, isothermal medium (Stromgren sphere test)

Reynolds+2009, JCP

Cosmological HII Region Expansion (Shapiro & Giroux test problem)

Reynolds+2009, JCP

RHD Solver Commissioning Test →uncalibrated SF/FB

- ΛCDM WMAP3 cosmology
- 8 Mpc box, 512³ grid, ∆x=16 kpc comoving — ~ 1.5 kpc proper at z=10
- M_{dm} = 1.2x10⁵ M_{sol}
 - 10⁸ M_{sol} halos well resolved by mass, marginally resolved spatially
- Pure hydrogen ionization (no He)
- Cen & Ostriker (1992) star formation/feedback recipe
- optional X-ray background (Ricotti, Gnedin & Ostriker 2005)

$$\dot{E}_{UV} = \varepsilon_{UV} \dot{M}_{SF} c^2$$
 $\dot{E}_{SN} = \varepsilon_{SN} \dot{M}_{SF} c^2$ $\dot{E}_X = \varepsilon_X \dot{M}_{SF} c^2$

box-size truncation

Proper baryon density

ionizing emissivity

Gas temperature

z = 6.16, t = 8.88e+08 yr

Radiation energy density

Ionized fraction

Volume rendering of ionization fraction

z = 6.20

Strong Suppression of SF below $M_{halo} = 10^{8.5} M_{sol}$

Strong Suppression of SF below M_{halo} =10^{8.5} M_s Cumulative SFR below a given mass Redshifts : black=12.86, blue = 8.74, green=7.45, orange=7, red = 6.16

$L_{uv}/10^{38} = A(\epsilon_{uv}/10^{-5}) \times (SFR/0.1)$

SF Density vs. Luminosity Threshold

Effect of Resolution

Cumulative Number Density of Haloes vs. Mass

Ionized Volume Fraction vs Redshift

Star Formation Rate Density vs Redshift

Where do we go from here?

- Uniform grid runs (reionization)
 - Larger boxes to sample high-mass galaxies, galaxy clustering, and global reionization process
 - Higher resolution to check for convergence
 - Effect of X-ray background generated by stellar sources (SNR, X-ray binaries) and AGN
- AMR runs (first galaxies)
 - Evolution of stellar populations, gas metallicity, and ionizing escape fraction in resolved halos
 - Effect of environment (e.g., clustering in rare peaks) on radiative feedback and SFR

Where do we go from here [2]?

- "self-consistent" global reionization simulations
 - AMR sims used to calibrate SF/FB model for a global reionization simulation
 - Targeted for Blue Waters sustained petascale supercomputer at NCSA in 2011

IBM 5 GHz Power7 >200,000 cores 800 TB RAM 6 PF peak >1 PF sustained on real applications

A Blue Waters compute drawer on display in the IBM booth at SC09